NJ 电子齿轮功能

制作时间: 2017.1

硬件设备:无

软件: Sysmac Studio

案例简介: NJ 控制从轴根据齿轮比与主轴做同步动作(电子齿轮)

1. 系统概述,硬件搭建和接线 本案例使用软件模拟

- 2. 操作步骤
- (1) 硬件设置: 无
- (2) 软件操作:
- a. 打开 Sysmac Studio,新建 NJ 工程在 EtherCAT 网络配置界面添加节点号为 1 和 2 的两台 R88D-KN01H-ECT 伺服

图 2-1

b. 在轴设置里添加两个轴变量,默认名称分别为 MC_Axis000 和 MC_Axis001。 轴类型设置为伺服轴,输出设备分别选择两台 R88D-KN01H-ECT 伺服,其他轴 参数使用默认设置。

图 2-2

c. 编写伺服锁定和原点预置指令,本案例中原点使用零位置预置功能,设置当前位置为原点。

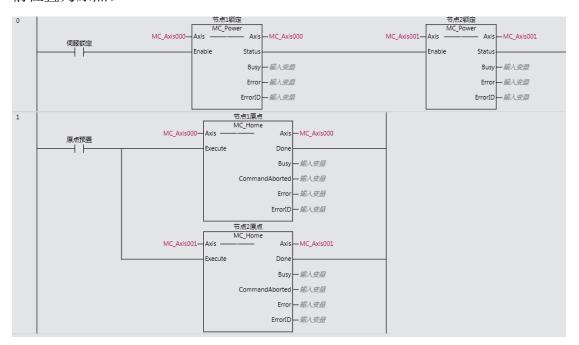


图 2-3

d. 编写主轴动作, 本案例主轴使用点动动作

图 2-4

e. 编写进入齿轮动作 MC_GearIn 和齿轮停止 MC_GearOut 指令

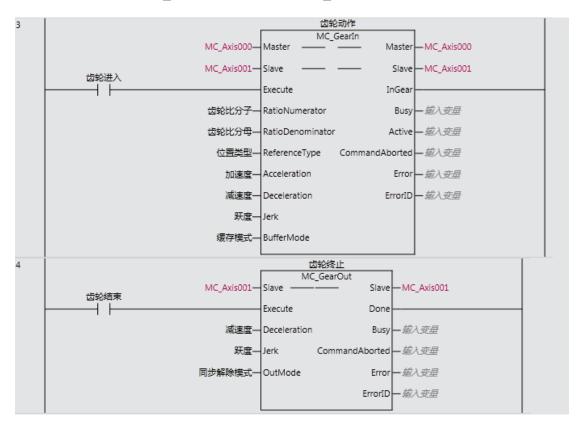


图 2-5

f. 点击同步 O , 传送到控制器(I) 将配置和程序传送到 NJ。

MC_GearIn 和 MC_GearOut 具体变量介绍:

输入变量

输入变量	名 称	数据类型	有效范围	初始值	内 容
Execute	启动	BOOL	TRUE, FALSE	FALSE	在上升沿开始指令。
Ratio Numerator	齿轮比分子	DINT*1	正数或负数 *1	10000	指定主轴和从轴间的电子齿轮的分子。
Ratio Denominator	齿轮比分母	UDINT*2	正数	10000	指定主轴和从轴间的电子齿轮的分母。
Reference Type*3	位置类型选择	_eMC_ REFERENCE _TYPE	0: _mcCommand 1: _mcFeedback 2: _mcLatestCommand	0 *4	指定位置类型。 0:指令位置(最近原始周期下的计算值) 1:反馈位置(同一原始周期下的取值) 2:指令位置(同一原始周期下的计算值)
Acceleration	加速度	LREAL	正数、 或"0"	0	指定加速度。 单位为 [指令单位 /s ²] *5
Deceleration	减速度	LREAL	正数、 或"0"	0	指定减速度。 单位为 [指令单位 /s ²]*3
Jerk (Reserved)	跃度	LREAL	0	0	(Reserved)
BufferMode	缓存 模式选择	_eMC_ BUFFER_ MODE	0: _mcAborting 1: _mcBuffered	0 *2	指定多重启动运动指令时的动作。 0:中断 1:等待

图 2-5

输入变量

输入变量	名 称	数据类型	有效范围	初始值	内 容
Execute	启动	BOOL	TRUE, FALSE	FALSE	在上升沿开始指令。
Deceleration	减速度	LREAL	正数或 "0"	0	指定减速度。 单位为 [指令单位 /s ²]。*1
Jerk (Reserved)	跃度	LREAL	0	0	(Reserved)
OutMode (Reserved)	同步解除 模式选择	_eMC_OUT_ MODE	0: _mcStop	0 *2	(Reserved)

^{*1.} 关于指令单位,请参阅 □ "NJ 系列 CPU 单元 用户手册 运动控制篇 (SBCE-363)"的 "单位转换设定"。 *2. 有效范围为枚举体的变量,其实际初始值不是数值,而是枚举元素。

输出变量

输出变量	名 称	数据类型	有效范围	内 容
Done	完成	BOOL	TRUE, FALSE	指令执行完毕时变为 TRUE。
Busy	执行中	BOOL	TRUE, FALSE	接收指令后变为 TRUE。
CommandAborted	执行中断	BOOL	TRUE, FALSE	指令中止时,变为 TRUE。
Error	错误	BOOL	TRUE, FALSE	发生异常时变为 TRUE。
ErrorID	错误代码	WORD	*	发生异常时,输出错误代码。16#0000 为正常。

3. 现象和结论

依次触发伺服锁定和零位置预置:

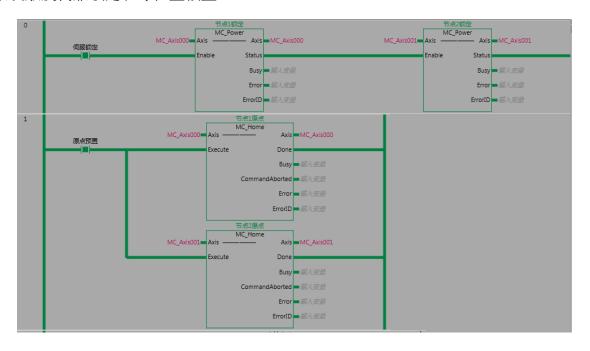


图 3-1

设定齿轮比分子为 100, 齿轮比分母为 1, 设定加减速速度等参数, 触发 MC_GearIn, 可以观察到 InGear 导通:

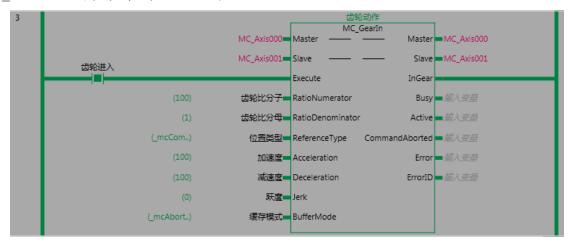


图 3-2

设定主轴点动速度100,触发主轴点动,可以监测到从轴按照齿轮比例进行运动:

MC_Axis000.Act.Pos	173
MC_Axis001.Act.Pos	17330

图 3-3

触发 MC_GearOut 停止齿轮动作,主轴继续点动,从轴停止运动

OMRON 客户服务中心 P072-1

图 3-4

MC_Axis000.Act.Pos	2824
MC_Axis001.Act.Pos	118360

图 3-5

4. 注意事项

如果中途想修改 gearin 参数,必须停止执行 gearout,然后再执行 gearin Gearin 指定的是从轴,只能指定从轴停止,主轴不会停止。